「放射能入門」タグアーカイブ

最終処分の話をしようや (10): 付録 4: 最終処分の保存期間10万年の根拠は?

前回は線量の単位のシーベルトについて,それが測定方法に注意が必要なことを述べました.また,放射線にはいくつも種類があること,その修正係数の違いなどから,国によってもシーベルトは異なるものになることがあることを述べました.いろいろと難しい話だったと思いますが,自分や家族の安全を判断するには必要な「(生体が影響を受ける)放射線の強さ」についての話でしたのでできるだけ詳しく調べたつもりです.

今回は最終処分の話によく出てくる10万年という保存期間の話についてです.いったいこの期間にはどんな根拠があるのでしょうか?

採鉱時のウランの安全性/危険性

最終処分での放射線のレベルと経過時間との関係では,採鉱時のウランのレベルを基準としています.しかし採鉱時のウランの放射線レベルが安全なのか危険なのかという話がなければその基準がいいのかどうかわかりません.自然のものだからいつも大丈夫というわけでもないので,この安全基準というのはどういうものかという疑問がでてきました.例えば毒蛇や毒茸,火山地帯などで噴出するガスなどは自然にあるものですが,自然にあるから安全というわけではありません.

Wikipedia の劣化ウランの医学的危険性の主張と反論を見ると,日本の文部科学省は劣化ウランの毒性は身の回りの海水や土砂中に存在するウランと同じ又は小さい」(平成14年11月)と発表しています.しかしこれではウランそのものの危険性がわからないので,比較になりません.一方,劣化ウランの危険性の項を短くまとめると,「劣化ウランは重金属であり,重金属中毒の原因となる.その毒性は砒素と同程度である.」という主張があります.また,アメリカ政府とWHOは危険性に対する証拠は不十分であると反対しています.ただし,子どもは口にしないよう WHO は警告しています.またアメリカの法律では劣化ウランは有害物質に指定されており管理下に置かれなくてはいけません.

どうもわかりにくいのですが,危険という主張の方々がいる一方,そうではないと主張される方々もいます.危険とは言えないと主張する方々の意見をまとめると,劣化ウランは危険ではないが,有害物質であり,法的に管理下に置くべきものであり(米政府),子どもは口にしてはいけないものです(WHO).そして,自然にとれるウランは,この劣化ウランと同程度に安全(文部科学省)か,それよりも危険な毒性を持つということだと思います.これに関しての議論は(Wiki [1])などをご覧になって御自身で御判断下さい.

また,燃料 1トンあたり 1000 GBq 相当,つまり 1GBq/kg (=10億ベクレル/kg)というのはかなり大きな値ですが,燃料 1トンあたり相当というものの意味がはっきりしません.食品の基準が 100 ベクレル/kg というようなレベルなのに,10億ベクレル/kg というのはとてつもなく感じます.

1つはっきりわかることは,核燃料の最終処分ではこの10億 ベクレル/kg になるまでに,現時点ではこれまでの記事の中にあったように,10万年を越える年月を必要とするというグラフがあることです.

では10万年後には安全なのか,というと,そういう議論は別にしていないことに気がつきます.10億 ベクレル/kg は食品の基準から言えば1000万倍の濃度ですから,これは私の素人判断ですが,安全とは言えないと思います.10万年という数字をよく見るのはどういうわけなのか,今後も機会があれば調べてみようかと思います.

おわりに

今回で最終処分の話は一度終了です.しかし,最終処分の話は現在も進行形のものです.今回勉強会を含めて私自身いくつか考えました.核のゴミは誰がどう負担するのか. 残念ながらこれは我々と我々の後の世代が既に持ってしまった負債です.現在の技術では処理が困難なゴミは,少なくともその技術のめどがたつまでは増やすのをやめるべきだと私は思います.負債や借金を先送りにしても,やがて支払わなくてはいけなくなります.我々は今日のために万年という単位の負担を子孫に押しつけ,国の未来の発展を妨げる世代になるのだろうか.そんなことを考えました.皆さんは何をお考えになりましたか? ここまで読んで下さった方,何かの参考となれば幸いです.

参考文献

  1. Wikipedia, 劣化ウラン: 医学的危険性の主張と反論, https://ja.wikipedia.org/wiki/%E5%8A%A3%E5%8C%96%E3%82%A6%E3%83%A9%E3%83%B3, (Online; accessed 2014-12-21)

最終処分の話をしようや (9): 付録 3: 測定方法で放射線の強さは変わること,放射線には種類があること

前回は放射能と放射線の違い,そしてそれについての単位の話をしました.それらは細かい話であまり違いがないように思うかもしれませんが,実はずいぶん違うもののため,どんな単位の値が基準になっているかを知らないと安全の判断を誤ってしまうことになります.日常では「割合」と「そのもの」は区別がしやすいですが,放射線などはなかなかなじみがないので難しいのだと思います.たとえば,速さと距離はそのような「割合」と「そのもの」の関係があります.50km/h (1時間に50km)の速さと 50km の距離というものを同じと間違える人はあまりいないと思いますが,100 mSv/h (1時間に 100 mSv)と 100 mSvとなるとなじみがないのでつい混乱してしまうことがあります.今回はシーベルトの話もしたいと思います.そして放射線量はその場の明るさと同じように,どう測定するかによって違うという話もありました.この続きを今回はお話ししていきます.

測定された放射線量の意味についての注意

私が 1 つ注意すべきだなと思ったことは,放射線量というのは場所で異なるものですから,それが測り方によっても変化することです.測る前に除染すればそこでの線量は落ちます.また,線量計の置く高さにもよって線量は変化します.線量の高いホットスポットはもちろん注意するべき場所ですが,その一ヶ所だけを問題にして,それを一般化しすぎるのも問題です.たとえば,一ヶ所のホットスポットのみをもって,この地域は全体的に危い,というような話はまたおかしいのです.その場合には危険性がある可能性があるということで,全体が危険かどうかはわかりません.場所によって線量の変化が大きいということは,ある少数の定点のみでの観測値では,測定の網が粗すぎて漏れがおきてしまうということです.線量の測定というものはこのようないくつもの注意が必要だと思います.もちろん,何らかの理由で,測定は細かくもしないし,正確にしていかないということがあれば,私としてはそのような危険の可能性のある所には近づきたくありません.しかし,十分に細かく測定をして(何をもって十分かも問題ですが),ある地域にほんの数カ所しかホットスポットがないとわかればそこを避けることができます.また,線量の監視を連続的に続けるのであれば,新たなホットスポットができてもみつけて避けることができます.

つまり問題は常にちゃんと安心できるだけの測定がされているかどうかです.もし危険性のある町で,測定が町に1〜2ヶ所となると,危険か安全かはどうとも言えないでしょう.そうなると私の心情としては避けてしまうことになるでしょう.

たとえば,もし駅前などで測定されている場合,そこを利用する人が多いという意味では良い測定点ですが,そこで掃除(除染)が頻繁にされているということがあれば,ちょっと離れた場所の線量とは異なるものを測っているかもしれません.ですから,今日の線量,というものが示されている場合,それがどこでどのように測った値なのかがわからなければ,あまり意味がないことでしょう.ある特定の場所だけ除染して測定してはその周辺の代表点として使えないでしょう.また反対に,もし人がある特定の場所にいなくてはならないような場合,その場所を覆って線量がどうかを測定することには意味があるでしょう.

もし放射線とつきあって生活することを決めたのであれば,どこかの線量というものが単に高い低いということよりも,何がその場所で重要なのかを考えることで,何をどう測るべきなのかが見えてくると思います.つまり,「測定された放射線の意味」を考える必要があると思います.あるどこか一ヶ所でこれだけ強かったということは,その近くに住み,その場所にアクセスする人には重要な情報かもしれませんが,それがある地域全体のことを示しているとは限らないからです.

この場合には測定する側とそこで暮らす側との信頼関係も必要になってきます.そのあたりを無視され,情報がでてこないとなると,各自が自分で判断できなくなるため,放射線とつきあって生活するということは難しくなると思います.

放射線には種類がある (シーベルトについて)

化学の入門を調べた方は,放射線には種類があることにもお気づきでしょう.放射線には α線,β線,γ線,などがあります.そして生体の受ける影響は,同じ吸収量(単位: グレイ)でも種類によって異なります.たとえば,α線の方が同じエネルギーの吸収量であっても生体にはより危険とされています.ですから,同じグレイ値では危険性が判断できません.これを補正しようとしたのがシーベルトです(図 9.1).補正する必要性については必要だということであまり議論はないようですが,その補正値がいくつか,たとえば,α線はγ線の何倍危いのか,という補正値にはいくつか議論があります.生体への危険性というのは重要なものである一方,その影響は複雑で正確にはわかっていないようです.そこでどうしてもおおざっぱな近似になります.そのためこの補正は,国によっても異なります.日本ではシーベルトの修正係数は,γ線,β線の影響を 1とすると陽子線は 5,α線は 20 となっています.これをグレイにかけたものがシーベルトです.シーベルトは生体への影響を考えていますが,注意することは,このように係数をどう決めるかで変化する量ということです.なぜ生体への影響を知ることが難しいかにはいくつか理由があるようです.たとえば,詳しい人体実験を行うのが難しいこと,年齢や性別などにも影響される可能性があること,などです.同じ攻撃を吸収しても(グレイ),その種類によってはダメージが違ってくるので,それを考慮した値がシーベルトです.

ちょっとゲーム好きな人にしかわかりにくいたとえかもしれませんが,先のゲームの例えに戻れば,異なる種類の放射線にさらされるということは,異なる属性の魔法攻撃,水の攻撃や火の攻撃など,を受けている状況と言えるかもしれません.それは同じ魔法の力(マジックポイント)を使っても効果が相手や場合によって異なることに似ています.しかし最終的にはヒットポイントがどれだけ減ったかが重要なのです.そのための補正がかかっているものがシーベルト,と考えることもできるでしょう.ゲームに詳しくない人にはわかりにくいたとえだったかもしれません.

radioactive_3

図 9.1 放射線には種類がある (α・β・γ・中性子線,...)

また,同じエネルギーでも,短期間で大量に浴びた場合と長期間で少しづつ浴びた場合には生体への影響は違ってきます.ですから,昨日と今日のシーベルトをたしていくら,というのは問題があるはずですが,現在の所は私達にはシーベルト以上の良いものさしがないので,シーベルトが最善の単位として利用されているようです.人間には影響に強い線形性があるわけではありませんが,シーベルトは線形性があると仮定しています.と,線形性と言ってもわかりにくいかもしれませんが.たし算が使えるという意味に考えればとりあえずは良いでしょう.

たとえば,人間は醤油を一気に1リットル飲めば命が危険ですが,毎日少しづつ料理に使って,一ヶ月で1リットルならば(ちょっと使いすぎとは思いますが),一気飲みほどの危険性はありません.一方,ある種の毒は排泄されずに蓄積され,たし算が効いたりしますし,特定の伝染病では,ほんのわずかでも爆発的に効果があり,毎日のたし算以上の効果があるものなど,線形性の効果を及ぼすものというのは限られています.

しかし,シーベルトは毎日少しづつ浴びた場合と強いものを一気に浴びた場合でも同じであり,たし算ができると仮定した単位というのは知っておいても良いと思います.こう考えると,シーベルトは長さの単位のメートルほどには強固な単位ではありません.

ここで 1 mSv/y というものと 1 mSv の違いについて述べておきます.1 mSv/yというのは1年間そこにいると 1mSv の線量を受けるというものです.ですから,1mSv/y の場所に 2年いれば,2mSv となります.現在の日本の強制避難勧告の基準は,20mSv/y です.もし 20 mSv/y の場所があり,線量が変化しない場合にはそこに 5 年留まれば,100 mSv となります.この mSv/y と mSv の違いには十分注意して下さい.たとえばあなたが 10 mSv までなら大丈夫と判断した場合,1mSv/y の場所に 10 年を越えて住めば10 mSv を越える可能性があります.特に若い人達や子どもは,放射線の影響をより受けやすいという注意もありますが,より長く滞在する可能性も考えなくてはいけません.年間10万円を毎年支払うことと,1回だけ10万円を支払うというのは,意味が違います.この例では,mSv/y と mSv には毎年払いと1回払いの違いがあります.

さてここでようやく廃棄物の基準にはシーベルトとベクレルがあるという話ですが,廃棄物が一種類の放射性物質である場合には,放射性物質ごとにベクレルで決めるのが合理的でしょう.放射性物質ごとに危険性は違いますし,半減期も異なるからです.ですから,核種ごとにベクレルでの廃棄物基準があります.しかし,これが混ざっていたらどうなるでしょうか.廃棄物を純粋な元素毎に分離するのは手間のかかることでしょう.ですから,そのような場合には,特定の手法で線量を測定し,線量としての基準で廃棄物かどうかを決めるということになるでしょう.その場合にはシーベルトを使うということになるかと思います.

報道などでベクレル値かシーベルト値なのかを見た際には,この違いを考える方が良いのではないかと思います.セシウムのベクレル値で廃棄物を決めている場合ですが,そこには他の核種はないのでしょうか.(例: [1])たとえば,ストロンチウム90 は入っていないのか.などの疑問が起こってくるこ
とと思います.

また,測定器が何を測れるのかも注意が必要です.γ線量のみを測るものが多いということですが,放射線はそれだけではありません.

化学入門では元素の後につく質量数が何かという話がありました.ですから,「放射性セシウム」と言われた場合,セシウム 134 なのかセシウム 137 なのかの違いがあります.これが興味ある理由は半減期がセシウム134 は2年程度,セシウム 137 では 30年程度と異なるからです.セシウム 134 なら20 年たてば,ベクレル値は 1000分の1以下になるのに,セシウム 137 なら半分程度にしかなりません.ほんの少し,高校の化学を勉強するだけで,こういう違いがわかってくると思います.そしてその目で報道を見るといろいろとわかってくると思います.報道する方も短い時間に様々な説明をしなくてはいけないので,基本的な知識については時には入れられないことも私は理解できます.この豆知識があなたの目を少し変える,報道が何を言っているのかを理解する助けとなることを希望いたします.

おそらくこれは細かいことではあるのですが,放射線の安全性の基準は様々な条件: 組織,国,時などによっても変化する [2] [3] ものです.たとえば,日本の首相官邸の「みなさまの安全確保」 [4] によると,避難すべき期間的避難区域は 20mSv/y が基準であり,ウクライナの基準では5mSv/yが基準[5] となっているなど,違いがあります.これはどこが間違っているというものではなく,それぞれの基準にはどれだけのリスクを考慮しているという前提条件があります.その前提条件はその時の政府などが判断しています.その政治的判断の違いがあるために,安全基準は国や組織などで異なります.

結局,放射線のある所,何かのリスクは必ずあります.絶対安全はなく,しかし,一方で十分受け入れられるようなリスクもあるはずです.政府はある仮定に基づく放射線のリスクの基準となる値を文書で我々に提示しています.問題はこのリスクを取るかどうか,前提条件が妥当かどうかの判断が我々にある場合が現時点ではいくつもあるということです.(ただし,その選択が何からの形で強制され,実質的に選択できなくなることがあれば私はおかしいと思います.)安全性を考えるためには,まず,私達はその基準となる値を理解し,その仮定の妥当性を検討しなくてはいけません.それでも危険性は最終的に確率でしかない部分もあり,それについては市民として妥協できるのか,政策を変化させる必要があるのかは個々の判断となるでしょう.

ここで述べた単位の解説はその判断基準となる一歩です.そんなに簡単ではないとは思いますが,あなたの判断の手助けになることを希望します.

次回

今回はシーベルトの単位や線量が測定方法などによって変化すること,放射線の種類などちょっと技術的な話でした.私自身,こんなに難しいことを考えなくてはいけないということ自体が何かおかしいとも思います.しかし,自然には通常ない危険性が既に拡散してしまったのですから,それに対抗するためには新しい概念を知らなくては,その危険に無力になってしまいます.できればそんな新しい概念を知らなくてもよい,もっと他の生産的なことに時間を使いたいと思ってもある意味,開かれたパンドラの箱はもう閉じられませんので仕方ありません.また,安全基準は国際的なものもありますが,様々なものが国によって違うことも調べるとわかりました.日本の基準に関しては参考文献にあげておきますが,国によって基準が異なることや,また,基準値が変更されることもあるというのはちょっと気になるところです.

次回は最終処分でどれだけ核燃料などを安全に保存しておかなくてはいけないのかの時間として良く言われる「10 万年」にはどんな根拠があるのか,ちょっと考えてこの話を終わりにしたいと思います.

参考文献

  1. 河北新報, 宮城県知事、詳細調査受け入れ 最終処分場, http://www.kahoku.co.jp/tohokunews/201408/20140805_11016.html, (Online; accessed 2014-12-26)
  2. 厚生労働省, 食品中の放射性物質への対応, http://www.mhlw.go.jp/shinsai_jouhou/shokuhin.html, 2014, (Online; accessed 2014-12-21(Sun))
  3. 厚生労働省, 食品中の放射性物質の新たな基準値を設定しました, http://www.mhlw.go.jp/shinsai_jouhou/dl/leaflet_120329_d.pdf, 2014, (Online; accessed 2014-12-21(Sun))
  4. 首相官邸, みなさまの安全確保 http://www.kantei.go.jp/saigai/anzen.html/, 「計画的避難区域」及び「緊急時避難準備区域」の設定について, http://www.meti.go.jp/press/2011/04/20110422004/20110422004-2.pdf, 2011, (Online; accessed 2014-12-21(Sun))
  5. オレグ・ナスビット, 今中哲二, ウクライナでの事故への法的取り組み, http://www.rri.kyoto-u.ac.jp/NSRG/Chernobyl/saigai/Nas95-J.html, 2011, (Online; accessed 2014-12-21(Sun))

最終処分の話をしようや (8): 付録 2: 放射能・放射線について

前回は,可能な限り安全性を自分で判断するためにいくつかの資料の参照先を書きました.もちろん,もっと他にも資料があると思いますので,御自分でお探しになって欲しいと思います.ここではそれらの資料を読む際に使える基本的用語などについて,補足していきたいと思います.

放射能・放射線について

前回紹介した Wikpedia や化学入門などの解説をご覧になられた方は原子というものが何かとか,放射線とは原子核の一部の陽子や中性子であったり,高エネルギーの電子であったり,あるいは高エネルギーの電磁波であったりということをご理解されたかと思います.これらが危険なのは,私達生命が生きていくために重要な私達の体の中の DNA 等を破壊することができるからです.どれだけ破壊するかというのは,放射線を放射する側のエネルギー,そして生体側がどれだけ吸収するか,などにかかわってきます.それは,どれだけ攻撃が強いのか,どれだけ守備が強いか,に似た感じです.これについて知るために,まずは,放射能と放射線と,その強さについての言葉について考えましょう.それを示す言葉がないと,なんだかわからない怖いもののままであったり,なんだかわからないから,権威の言うことを信じるしかないということになりかねません.そこで,ちょっと退屈かもしれませんが,放射能,放射線,ベクレル,シーベルトなどの言葉の意味をまとめてみます.

私がこれについて調べているうちに,放射能と放射線の関係は,光のアナロジーが使えそうだとわかりましたので,それを使って説明したいと思います.

radioactive_1
図1 電球と放射能のアナロジー

放射能というのは放射線を出す能力のことです.つまり能力のことです.先の攻撃,守備の話では攻撃側の武器の強さの話とも言えるでしょう.光で言えば電球は光を放射する能力がありますので,電球には光放射能があると言えるでしょう.そして光そのものが放射線に対応します.図 1 に電球と放射能の対応を示します.つまり放射能は物の性質,たとえば,電球の能力に対応します.注意して欲しいのは放射能は光には対応せずに,電球に対応するということです.電球は光を出す能力がありますが,光そのものではありません.私達は電球をつかんで移動して,箱に入れ,後で取り出すことができますが,光そのものをつかんで移動させて箱に入れて後で取り出すことはできません.音でもこれをたとえることができます.スピーカーは音を出す能力がありますので音放射能があると言えますが,スピーカーは音そのものではありません.放射能と放射線の違いはこれでおわかりでしょうか?

放射線は通常原子核が崩壊すると発生します.1回の崩壊でどのような放射線が出るかは原子核の種類によって違います.そして,ある単位質量の物質が1秒間にどれだけの崩壊を起こすかの数をベクレル(Bq)という単位で示します.これが攻撃武器側の強度です.単位質量というのは 1kg や 1t など,ある決まった量のことをちょっと難しく(しかし正確に)言っているだけで,何か決まった重さのことです.(正確には重さは場所,たとえば地球上と月の上では変化するものであり,質量は場所で変化しないものなので違うものです.しかし,とりあえずは重さと考えても通常はさしつかえないでしょう.)

どうして単位質量というものを考えるかというと,電球が沢山ついていれば明るくなるように,同じ放射能(Bq)の物質が多量にあればその分だけ多く放射線が出るからです.ですから,通常は 1kg の何かの中にこれだけの Bq という意味で,Bq/kg というような単位になっています.たとえば,ある放射性廃棄物 1kg あたり 8000 Bq とあれば,この 1kg の廃棄物は1 秒間に 8000 回の崩壊を起こします.そして,通常,それに対応する放射線を出します.これが 2 kg あれば16000 回の崩壊でその分の放射線を出すということで,量が増えると放射能であるベクレル値が増え,そして対応する放射線の量も増えます.しかし,1kg あたりは同じ 8000Bq/kg です.単位質量を言わずに,ベクレルしか言わないということは,それは全部の放射能の値になっているはずです.また,単位質量を小さくすれば,ベクレルの値はみかけ上小さくなります.1kg の放射性物質の出す放射線も,それを 1g にすれば 1000 分の 1 の強さになります.ある食べ物 1kgあたりの 1000 カロリーのものは,1g あたり 1 カロリーです.1000カロリーと1カロリーは聞いた感じではまったく違いますが,このようにまったく同じものを言いかえることができます.そしてここにはまったく嘘はありません.ですから細かい話のようですが,単位は注意しないといけません.同じカロリー密度の食べ物でも,2倍の量を食べれば2倍のカロリーになります.ですから同じ Bq/kgの廃棄物でも2倍の量があれば2倍の Bq になります.同じパーセントのアルコールでも2倍の量を飲めば2倍のアルコールが摂取されます.でも,パーセントは同じです.

何かの基準が Bq/kg の場合,元が同じ Bq/kg でも,他のものと混ぜて薄めることで基準値以下にするということが可能です.たとえば,8000 Bq/kg の廃棄物 1kg と,汚染されていない何かを 1kg 加えてよく混ぜれば,2 kg で 8000 Bqですから,4000 Bq/kg と汚染度が半分になったように見えます.たとえば汚染水を基準値以下にしたければ水を混ぜて薄めるだけで, Bq/kg で測った基準値以下にできます.もちろん汚染水が海に出れば薄まって基準値以下になるでしょう.それを言えばどんな水に解ける毒でも最初は海に投棄すればまず基準値以下になるでしょう.しかし,そのようなことを続けていけば公害となったことは過去にあったことです.ですからBq/kg の基準値以下の濃度なら良いというような議論には注意をする必要があります.私は以上の理由から,濃度だけではなく,どれだけの量を投棄するのかなどの情報も重要だと思います.このBq/kg という単位を理解することで,どういう情報が必要なのかがおわかりになったことと思います.たとえば,濃度しか言わない報道には注意が必要です.

放射線の量

ここまでの話で,直接に危険なものは,どちらかというと放射能ではなく,放射線そのものであることがおわかりでしょう.電球と違って放射性物質はスイッチを切れば放射線が出ないようにはできませんので,放射能を持つ物質に危険がないというわけではありません.しかし放射能を持つ物質を何かで覆って放射線を遮ったり,弱くすることはできます.ある放射能を持つ物質があっても,十分遮蔽されていれば,その周囲には放射線はなく,したがって生体の破壊が起こらないので,問題はありません.ですから,ある場所でどれだけ放射線があるのかは重要なことです.

そこで,ある場所にはどれだけの放射線があるかを考えるのが,放射線量になります.図 2 のように,光源から遠くに離れればその場の光(照度)が弱くなるように,放射線源から離れれば放射線量は弱くなります.また,放射線の測定では放射線のエネルギーそのものではなく,ちょっとややこしいのですが,吸収量を考えます.その単位はグレイやシーベルトです.吸収量というのは,同じエネルギーの放射線でも物体に吸収されなければ小さくなります.これは防御側の防具の性能がかかわってくる値です.安全性で問題になるのは,生体の受ける放射線の吸収量です.どれだけ吸収したかは,ある単位質量のものが吸収したエネルギーを基本とします.1 kg につき 1 J の仕事に相当するエネルギーが与えられた時に 1 グレイ(Gy) です.1 J (ジュール)の仕事とは何かなどは,中学,高校の物理の教科書などを参考にして下さい.イメージとしては,吸収量とはその場でどれだけダメージをもらったかに近いものと考えられるでしょう.

radioactive_2

図 2. 光の照度と放射線量のアナロジー

ゲームがあまり得意でない人にはよくないたとえかもしれませんが,多くのロールプレイングゲームでは同じ力で攻撃を受けても,装備や防御したかどうかによってダメージの蓄積,つまり,ヒットポイントの減り方は違います.重要なのはどれだけの攻撃を相手から受けたかではありません.どれだけヒットポイントが減ったかです.ここでは吸収量とはヒットポイントがどれだけ減ったかにたとえることができます.しかし本当に重要なのはヒットポイントの減少量ではなく,残りヒットポイントです.しかし,放射線に対する残りヒットポイントは人,年齢などによっても違うので吸収量だけでもまだ十分とは言えません.

次回

今回は放射能と放射線の違い,そしてそれについての単位の話をしました.また,単位質量あたりの Bq と,Bq の違いの話をしました.

単位質量あたりの Bq というのは濃度であり,それだけでは実際にどれだけの放射能を持つ物質があるのかはわかりません.ビールのアルコール濃度が 4% というだけでは,実際にどれだけアルコールがあるかわからないことと同じです.同じアルコール濃度のビールでも,100ml 飲むのか,1 リットル飲むのかでアルコールの量は違います.また同じ量のアルコールでも薄めれば濃度は下がります.たとえば,汚染水の話をしている時に,Bq/kg (濃度)の話をしているのか,Bq の話をしているのかは注意が必要です.

次回はもう少し放射線量の話を続けたいと思います.

最終処分の話をしようや (7): 付録 1: リスクを自分で判断するための知識を理解しよう

付録 (やまうちメモ) について

注: 付録は全てやまうちメモ(記録者やまうちの調べたものや,やまうちの個人的意見)です.

この節の目的: リスクを自分で判断するための知識を理解しよう

放射能というのは放射線を出す能力のことです.と言ってもしばらく前までは私は放射能と放射線の違いもよくわかっていませんでした.そのような方のために,ここでは放射能と放射線の違いについてまとめておきたいと思います.

市民としては結局「安全かどうか」という部分に関心があるのですが,放射能の問題の難しいところは,即時に目に見えてはわからないところです.また,科学的な安全性の実験データが乏しいこともあります.本当に安全性を確かめるには,何千もの被験者を何年かに渡って様々な放射性の環境に起き,どのような条件が安全なのかを人体実験する必要があります.しかし,そのような実験を行うことは困難です.実際に実験できないとなると,当然専門家の意見も一定ではありません.すると安全性の議論はどこかのグレイゾーンで水掛け論に終わることも多く,建設的な議論とならない傾向があります.したがって,現在我々ができることは,まずは危険を避けることですが,それが難しい場合には自分でリスクを考え,どこまでならば良いのかを自分で判断することとなります.誰かの言うことを盲目的に信じた結果を我々は既に福島で見ました.しかし,自分で可能な限り判断する必要があるとしても,まずは問題が理解できなくては同じことになってしまいます.

ですからここでは安全に関しては政府などの出しているいくつかの資料を参考にすることにとどめます.しかし,その資料にでてくる言葉,例えばベクレルとは何か,などが理解できなくては判断をしようにもできません.そこでこの付録では,そのような言葉について簡単な解説をします.

つまりこの節の目的はそれぞれが自分でリスクについて判断するための基礎知識を得ることです.提供されている資料を読むことができるようにすることです.それはベクレルとはどういう意味か,放射能とは何かというような基礎的な知識です.まずはここから始めることにしましょう.

放射能・放射線などの言葉について必要な知識

まず放射線とは何かというのは,原子とは何かという話にかかわってきます.原子や分子というものは現代の社会を支える工業でも基本になっています.そのため,中学の理科や高校の物理,化学で習います.しかし,私は,原子や分子に関して習った時には,それが社会の根幹となる産業や電気などの毎日の生活と密接にかかわっていることなどは知りませんでした.あるいはピンと来なかったのです.あなたもそうかもしれません.また電気とは何かという話も原子に密接に関係しています.電気は毎日使っていると思いますが,「それは何か」とお子さんに尋ねられてちゃんと答えられるでしょうか? 中学などで習ってはいるのですが,私同様,忘れてしまっていて,今回の事故のようなことになってあわててしまった方は,今からでも調べてみると良いのではないかと思います.まずは知ることではないでしょうか.昔の教科書をひっぱり出してみるとか,その年代のお子さんがいらっしゃるご家庭でしたらお子さんに尋ねてみるとかもいいかと思います.あるいはインターネットには資料は多くあるのでご覧になるのもよいでしょう.

原子などについての科学的知識の資料としては Wikipedia の記事[1]からはじめるのも1つの手です.また,化学のオンライン授業を提供するサイトなどに原子の話があります.これらのサイトは原子力発電とは関係ありませんので安全性などについてはほとんど述べられていません.しかし,「放射線とは何か」などについては,初学者向けに比較的容易な解説があり参考になると思います.手前味噌ですが,化学の初学者向けの解説ビデオとして [2] を挙げておきます.ただし,これは中学から高校生向けの一般的な化学入門なので,もっと簡単なものが知りたいとか,その反対にもっと高いレベルのものが詳しく知りたいという方々は,御自身でいろいろと調べてみて下さい.

安全性については日本政府の官邸から「みなさまの安全確保[3]」のような資料があります.このページからいくつかの安全基準をみつけることができます.しかし,そこには「内部被曝1mSv/y の前提における飲料水の基準は 10Bq/kg [4]」のような記述になっています.この言葉についての解説も[3] からたどれます.それを自力でおわかり頂ける方はこれ以上この記事を読まれる必要はありません.しかし,これではどういうものかわからないという方のためにここではその意味について,私なりにまとめてみたいと思います.たとえば,シーベルト(Sv) とは何か,ベクレル(Bq) とは何か,なぜ Bq/kg という単位なのか,mSv/y と mSv の違いは何か,そもそもその違いは個人にとってどう重要なのか,などについてです.ただし,たとえ意味がわかっても,その値が本当に安全かどうかについての判断は困難です.それでもその知識で報道を見ると,意味不明ではなくなり,ずっと理解がすすむと思います.そして御自分で判断できる可能性も出てきます.

ここでは私は記述にできるだけ間違いのないように努力し,ここで書いていることの根拠となった資料への参照もできるだけ載せておきます.しかし,私は核物理学等は素人であり,間違いもあるかと思いますので,あまり鵜呑みにすることはなく,御自分でもお調べになって,納得されるようにお願いいたします.

次回

今回は安全性をできるだけ自分で判断するため,どのような資料があるかなどをみてきました.次回はもう少し具体的な話をしていきます.この資料を自分でお読みになるというのも良いと思いますが,なかなか難しい部分もあると思いますので読むための基礎知識を少し補足したいと思います.少なくともできるだけ誤解しないようにするための基礎的な技術的知識について考えていきます.高校生までの知識で十分理解できるものだと思いますので,何かの間違いを鵜呑みにして後で「こんなはずではなかった」ということにならないようにしたいと思います.自分の命だけではなく家族の命を考えたら,ちょっとした科学的知識を理解する勉強はしてもいいのではないかと思います.理解,つまり,分かることがが目的ですから,私の言っていることが間違いであれば,その間違いが分かるとすばらしいと思います.

参考文献

  1. Wikipedia Ja, 放射線, https://ja.wikipedia.org/wiki/%E6%94%BE%E5%B0%84%E7%B7%9A, (accessed 2014-12-26)
  2. 日本語版カーンアカデミー, 化学の基礎プレイリスト, https://www.youtube.com/playlist?list=PLhDDoRSjeQODO7kcf8hoqboFyuDY9uYJ7, (accessed 2014-12-26)
  3. 首相官邸, みなさまの安全確保 (http://www.kantei.go.jp/saigai/anzen.html/), 計画的避難区域」及び「緊急時避難準備区域」の設定について (http://www.meti.go.jp/press/2011/04/20110422004/20110422004-2.pdf), 2011, (accessed 2014-12-21) http://www.kantei.go.jp/saigai/20110411keikakuhinan.html
  4. 厚生労働省: 原子力被災者生活支援チーム, 原子力発電所外に適用されている放射能に関する主な指標例, http://www.meti.go.jp/earthquake/nuclear/pdf/120427_01a.pdf, (accessed 2014-12-26)